RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 93, Issue 6, Pages 853–868 (Mi mzm9068)

This article is cited in 2 papers

On the Conjugacy Problem in the Group $F/N_1\cap N_2$

O. V. Kulikova

N. E. Bauman Moscow State Technical University

Abstract: Let $N_1$ ($N_2$) be the normal closure of a finite symmetrized set $R_1$ ($R_2$, respectively) in a finitely generated free group $F=F(A)$. As is known, if $R_i$ satisfies condition $C(6)$, then the conjugacy problem is decidable in $F/N_i$. In the paper, it is proved that, if one adds to condition $C(6)$ on the set $R_1\cup R_2$ the atoricity condition for the presentation $\langle A\mid R_1,R_2\rangle$, then the conjugacy problem is decidable in the group $F/N_1\cap N_2$ as well. In particular, for the decidability of the conjugacy problem in $F/N_1\cap N_2$, it is sufficient to assume that the set $R_1\cup R_2$ satisfies condition $C(7)$.

Keywords: conjugacy problem, finite symmetrized set in a free group, presentation, atoricity condition, condition $C(6)$, condition $C(7)$, subdirect product.

UDC: 512.54.05

Received: 22.02.2011
Revised: 07.09.2011

DOI: 10.4213/mzm9068


 English version:
Mathematical Notes, 2013, 93:6, 837–849

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026