Abstract:
Two nonlinear integrable models with two space variables and one time variable, the Kadomtsev–Petviashvili equation and the two-dimensional Toda chain, are studied as well-posed boundary-value problems that can be solved by the inverse scattering method. It is shown that there exists a multitude of integrable boundary-value problems and, for these problems, various curves can be chosen as boundary contours; besides, the problems in question become problems with moving boundaries. A method for deriving explicit solutions of integrable boundary-value problems is described and its efficiency is illustrated by several examples. This allows us to interpret the integrability phenomenon of the boundary condition in the traditional sense, namely as a condition for the availability of wide classes of solutions that can be written in terms of well-known functions.