RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2012 Volume 91, Issue 4, Pages 563–570 (Mi mzm9034)

This article is cited in 1 paper

On Unitary Transposable Matrices of Order Three

Kh. D. Ikramov, A. K. Abdikalykov

M. V. Lomonosov Moscow State University

Abstract: A matrix $A \in M_n(\mathbb{C})$ is said to be unitarily transposable if
$$ A^T=Q^*AQ $$
for a certain unitary matrix $Q$. Every $2\times 2$ matrix is unitarily transposable; however, for greater orders, a similar statement is false, and the general description of unitarily transposable matrices of order $n$ is at present unknown. We give such a description for matrices of order three.

Keywords: unitary transposable matrix, unitary similarity, Specht's criterion, Schur form, persymmetric matrix, geometric multiplicity.

UDC: 512.64

Received: 01.02.2011

DOI: 10.4213/mzm9034


 English version:
Mathematical Notes, 2012, 91:4, 528–534

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026