RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 89, Issue 1, Pages 12–18 (Mi mzm8922)

This article is cited in 4 papers

Two-Sided Bounds for the Volume of Right-Angled Hyperbolic Polyhedra

A. Yu. Vesnina, D. Repovšb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b University of Ljubljana, Slovenia

Abstract: For a compact right-angled polyhedron $R$ in Lobachevskii space $\mathbb H^3$, let $\operatorname{vol}(R)$ denote its volume and $\operatorname{vert}(R)$, the number of its vertices. Upper and lower bounds for $\operatorname{vol}(R)$ were recently obtained by Atkinson in terms of $\operatorname{vert}(R)$. In constructing a two-parameter family of polyhedra, we show that the asymptotic upper bound $5v_3/8$, where $v_3$ is the volume of the ideal regular tetrahedron in $\mathbb H^3$, is a double limit point for the ratios $\operatorname{vol}(R)/\operatorname{vert}(R)$. Moreover, we improve the lower bound in the case $\operatorname{vert}(R)\le 56$.

Keywords: right-angled hyperbolic polyhedron, volume estimate for hyperbolic polyhedra, Lobachevskii space, Löbell polyhedron, dodecahedron.

UDC: 514

Received: 29.12.2009

DOI: 10.4213/mzm8922


 English version:
Mathematical Notes, 2011, 89:1, 31–36

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026