RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2013 Volume 94, Issue 3, Pages 401–415 (Mi mzm8892)

This article is cited in 8 papers

Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev

Abstract: Order-sharp estimates of the best orthogonal trigonometric approximations of the Nikolskii–Besov classes $B^{r}_{p,\theta}$ of periodic functions of several variables in the space $L_{q}$ are obtained. Also the orders of the best approximations of functions of $2d$ variables of the form $g(x,y)=f(x-y)$, $x,y\in \mathbb{T}^d=\prod_{j=1}^{d}[-\pi,\pi]$, $f(x)\in B^r_{p,\theta}$, by linear combinations of products of functions of $d$ variables are established.

Keywords: best trigonometric approximation of functions, best bilinear approximation of functions, Nikolskii–Besov class of periodic functions, the space $L_{q}$, Fourier sum, Vallée-Poussin kernel, Minkowski inequality.

UDC: 517.51

Received: 13.07.2010
Revised: 05.07.2012

DOI: 10.4213/mzm8892


 English version:
Mathematical Notes, 2013, 94:3, 379–391

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026