RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 3, Pages 405–414 (Mi mzm8813)

On a Version of the Hua Problem

A. Kirkoryan, D. I. Tolev

Sofia University St. Kliment Ohridski

Abstract: We prove that almost all natural numbers $n$ satisfying the congruence $n\equiv3\pmod{24}$, $n\not\equiv0\pmod5$, can be expressed as the sum of three squares of primes, at least one of which can be written as $1+x^2+y^2$.

Keywords: prime number, Hua problem, natural number, multiplicative function, Euler function, Cauchy inequality, Dirichlet $L$-series.

UDC: 511.333

Received: 24.11.2009

DOI: 10.4213/mzm8813


 English version:
Mathematical Notes, 2010, 88:3, 365–373

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026