RUS
ENG
Full version
JOURNALS
// Matematicheskie Zametki
// Archive
Mat. Zametki,
2010
Volume 88,
Issue 3,
Pages
405–414
(Mi mzm8813)
On a Version of the Hua Problem
A. Kirkoryan
,
D. I. Tolev
Sofia University St. Kliment Ohridski
Abstract:
We prove that almost all natural numbers
$n$
satisfying the congruence
$n\equiv3\pmod{24}$
,
$n\not\equiv0\pmod5$
, can be expressed as the sum of three squares of primes, at least one of which can be written as
$1+x^2+y^2$
.
Keywords:
prime number, Hua problem, natural number, multiplicative function, Euler function, Cauchy inequality, Dirichlet
$L$
-series.
UDC:
511.333
Received:
24.11.2009
DOI:
10.4213/mzm8813
Fulltext:
PDF file (506 kB)
References
English version:
Mathematical Notes, 2010,
88
:3,
365–373
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026