RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 3, Pages 325–339 (Mi mzm8807)

On the Vinogradov Additive Problem

G. I. Arkhipova, V. N. Chubarikovb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University

Abstract: Let us state the main result of the paper. Suppose that the collection $N_1,\dots,N_n$ is admissible. Then, in the representation
$$ \begin{cases} p_1+p_2+\dots+p_k=N_1, \\ \dots\dots\dots\dots\dots\dots\dots\dots \\ p_1^n+p_2^n+\dots+p_k^n=N_n, \end{cases} $$
where the unknowns $p_1,p_2,\dots,p_k$ take prime values under the condition $p_s>n+1$, $s=1,\dots,k$, the number $k$ is of the form
$$ k=k_0+b(n)s, $$
where $s$ is a nonnegative integer. Further, if $k_0\ge a$, then, in the representation for $k$, we can set $s=0$, but if $k_0\le a-1$, then, for a given $k_0$ there exist admissible collections $(N_1,\dots,N_n)$ that cannot be expressed as $k_0$ summands of the required form, but can be expressed as $k_0+b(n)$ summands.

Keywords: additive problem of Vinogradov, Hilbert–Kamke problem, Vinogradov system of equations, $p$-solvability, Waring–Goldbach problem, Vinogradov system of congruences.

UDC: 511

Received: 29.12.2009

DOI: 10.4213/mzm8807


 English version:
Mathematical Notes, 2010, 88:3, 295–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026