RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 90, Issue 5, Pages 744–763 (Mi mzm8780)

This article is cited in 3 papers

Rational Approximations to Values of the Digamma Function and a Conjecture on Denominators

T. Hessami Pilehrood, Kh. Hessami Pilehrood

Shahrekord University, Iran

Abstract: We obtain explicit constructions for rational approximations to the numbers $\ln(b)-\psi(a+1)$, where $\psi$ defines the logarithmic derivative of the Euler gamma function. We prove formulas expressing the numerators and the denominators of the approximations in terms of hypergeometric sums. This generalizes the Aptekarev construction of rational approximations for the Euler constant $\gamma$. As a consequence, we obtain rational approximations for the numbers $\pi/2\pm\gamma$. The proposed construction is compared with with rational Rivoal approximations for the numbers $\gamma+\ln(b)$. We verify assumptions put forward by Rivoal on the denominators of rational approximations to the numbers $\gamma+\ln(b)$ and on the general denominators of simultaneous approximations to the numbers $\gamma$ and $\zeta(2)-\gamma^2$.

Keywords: digamma function, Euler gamma function, rational approximation to a number, Aptekarev approximation, Rivoal approximation, hypergeometric sum, Laguerre polynomial, Euler constant.

UDC: 511+517.538.3+517.588

Received: 06.01.2010

DOI: 10.4213/mzm8780


 English version:
Mathematical Notes, 2011, 90:5, 730–747

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026