RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 3, Pages 330–336 (Mi mzm8672)

This article is cited in 2 papers

Isomonodromic Confluence of Singular Points

Yu. P. Bibilo

M. V. Lomonosov Moscow State University

Abstract: We consider the problem of confluence of singular points under isomonodromic deformations of linear systems. We prove that a system with irregular singular points is a result of isomonodromic confluence of singular points with minimal Poincaré ranks, i.e., of singular points whose Poincaré rank does not decrease under gauge transformations.

Keywords: isomonodromic deformation, linear differential equation, confluence of singular points, Poincaré rank, gauge transformation, monodromy matrix, Fuchsian system.

UDC: 517.927.7

Received: 30.09.2009

DOI: 10.4213/mzm8672


 English version:
Mathematical Notes, 2010, 87:3, 309–315

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026