RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 3, Pages 350–354 (Mi mzm8664)

This article is cited in 5 papers

Remark on Factorials that are Products of Factorials

K. G. Bhat, K. Ramachandra

Indian Institute of Science

Abstract: In a paper published in 1993, Erdős proved that if $n!=a!b!$, where $1<a\le b$, then the difference between $n$ and $b$ does not exceed $5\log\log n$ for large enough $n$. In the present paper, we improve this upper bound to $((1+\epsilon)/\log 2)\log\log n$ and generalize it to the equation $a_1!a_2!\dots a_k!=n!$. In a recent paper, F. Luca proved that $n-b=1$ for large enough $n$ provided that the ABC-hypothesis holds.

Keywords: factorial, product of factorials, Stirling's formula, prime factor.

UDC: 511

Received: 03.08.2009

DOI: 10.4213/mzm8664


 English version:
Mathematical Notes, 2010, 88:3, 317–320

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026