RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 6, Pages 859–866 (Mi mzm8562)

This article is cited in 3 papers

An Estimate for the Sum of Legendre Symbols

E. A. Grechnikov

M. V. Lomonosov Moscow State University

Abstract: For the sum $S$ of the Legendre symbols of a polynomial of odd degree $n\ge3$ modulo primes $p\ge3$, Weil's estimate $|S|\le(n-1)\sqrt p$ and Korobov's estimate
$$ |S|\le (n-1)\sqrt{p-\frac{(n-3)(n-4)}{4}}\qquad \text{for}\quad p\ge\frac{n^2+9}{2} $$
are well known. In this paper, we prove a stronger estimate, namely,
$$ |S|<(n-1)\sqrt{p-\frac{(n-3)(n+1)}{4}}. $$


Keywords: polynomial of odd degree, Legendre symbol, Weil's estimate, Korobov's estimate.

Received: 15.07.2009

DOI: 10.4213/mzm8562


 English version:
Mathematical Notes, 2010, 88:6, 819–826

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026