RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 86, Issue 5, Pages 776–793 (Mi mzm8517)

This article is cited in 1 paper

Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form

Shichang Shua, Annie Yi Hanb

a Xianyang Normal University
b Borough of Manhattan Community College

Abstract: In this paper, we investigate the nonnegative sectional curvature hypersurfaces in a real space form $M^{n+1}(c)$. We obtain some rigidity results of nonnegative sectional curvature hypersurfaces $M^{n+1}(c)$ with constant mean curvature or with constant scalar curvature. In particular, we give a certain characterization of the Riemannian product $S^k(a)\times S^{n-k}(\sqrt{1-a^2})$, $1\le k\le n-1$, in $S^{n+1}(1)$ and the Riemannian product $H^k(\operatorname{tanh}^2r-1)\times S^{n-k}(\operatorname{coth}^2r-1)$, $1\le k\le n-1$, in $H^{n+1}(-1)$.

Keywords: hypersurface in Euclidean $n$-space, space form, mean curvature, scalar curvature, principal curvature, sectional curvature, umbilical sphere, Codazzi equation, Ricci identity.

UDC: 514.74

Received: 30.07.2008

DOI: 10.4213/mzm8517


 English version:
Mathematical Notes, 2009, 86:5, 729–743

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026