RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2009 Volume 86, Issue 3, Pages 429–444 (Mi mzm8502)

This article is cited in 16 papers

Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type

E. A. Rodionov, Yu. A. Farkov

Russian State Geological Prospecting University

Abstract: Suppose that $\omega(\varphi,\,\cdot\,)$ is the dyadic modulus of continuity of a compactly supported function $\varphi$ in $L^2(\mathbb R_+)$ satisfying a scaling equation with $2^n$ coefficients. Denote by $\alpha_\varphi$ the supremum for values of $\alpha>0$ such that the inequality $\omega(\varphi,2^{-j})\le C2^{-\alpha j}$ holds for all $j\in\mathbb N$. For the cases $n=3$ and $n=4$, we study the scaling functions $\varphi$ generating multiresolution analyses in $L^2(\mathbb R_+)$ and the exact values of $\alpha_\varphi$ are calculated for these functions. It is noted that the smoothness of the dyadic orthogonal wavelet in $L^2(\mathbb R_+)$ corresponding to the scaling function $\varphi$ coincides with $\alpha_\varphi$.

Keywords: Daubechies wavelet, multiresolution analysis, the space $L^2(\mathbb R_+)$, Walsh series, binary entire function, Haar function, modulus of continuity, dyadic scaling function.

UDC: 517.518.3+517.965

Received: 23.07.2008
Revised: 20.01.2009

DOI: 10.4213/mzm8502


 English version:
Mathematical Notes, 2009, 86:3, 407–421

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026