RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2004 Volume 76, Issue 1, Pages 20–26 (Mi mzm85)

This article is cited in 13 papers

On Polyconvolutions Generated by the Hankel Transform

L. E. Britvina

Novgorod State University after Yaroslav the Wise

Abstract: In this paper, we construct two polyconvolutions (generalized convolutions) with weight $\gamma=x^{-\nu}$ generated by the Hankel transform possessing the factorization relations
$$ \text{H}_\nu[h_1](x)=x^{-\nu}\text{H}_\mu[f](x)\text{H}_\mu[g](x), \qquad \text{H}_\mu[h_2](x)=x^{-\nu}\text{H}_\nu[f](x)\text{H}_\mu[g](x). $$
Here $\text{H}_\mu$ is the Hankel transform operator of order $\mu$. Conditions for the existence of the constructed polyconvolutions are found. On their basis, using the differential properties of the Hankel transform, we obtain two more polyconvolutions. The derived constructions allow us to solve new classes of integral and integro-differential equations and systems of equations.

UDC: 517.9

Received: 25.06.2001

DOI: 10.4213/mzm85


 English version:
Mathematical Notes, 2004, 76:1, 18–24

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026