RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2011 Volume 89, Issue 4, Pages 596–602 (Mi mzm8462)

This article is cited in 41 papers

Nonlocal Problem for a Parabolic-Hyperbolic Equation in a Rectangular Domain

K. B. Sabitov

Sterlitamak Branch of Academy of Sciences of Bashkortostan

Abstract: For an equation of mixed type, namely,
$$ (1-\operatorname{sgn}t)u_{tt}+(1-\operatorname{sgn}t)u_{t}-2u_{xx}=0 $$
in the domain $\{(x,t)\mid0<x<1,\,-\alpha<t<\beta\}$, where $\alpha$, $\beta$ are given positive real numbers, we study the problem with boundary conditions
$$ u(0,t)=u(1,t)=0,\quad -\alpha\le t\le\beta,\qquad u(x,-\alpha)-u(x,\beta)=\varphi(x),\quad 0\le x\le1. $$
We establish a uniqueness criterion for the solution constructed as the sum of Fourier series. We establish the stability of the solution with respect to its nonlocal condition $\varphi(x)$.

Keywords: parabolic-hyperbolic equation, nonlocal condition, Fourier series, initial boundary-value problem, differential equation, Weierstrass test.

UDC: 517.95

Received: 22.05.2009

DOI: 10.4213/mzm8462


 English version:
Mathematical Notes, 2011, 89:4, 562–567

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026