RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 6, Pages 873–884 (Mi mzm8188)

This article is cited in 10 papers

$\omega$-Limit sets of smooth cylindrical cascades

A. B. Krygin

Moscow Power Engineering Institute

Abstract: Let $f(x)$ be a smooth function on the circle $S^1$, $x\pmod1$, $\int_{S_1}f(x)\,dx=0$, $\alpha$ be an irrational number, and qn be the denominators of convergents of continued fractions. In this note a classification of $\omega$-limit sets for the cylindrical cascade
$$ T:(x,y)\to(x+\alpha,y+f(x)), $$
$x\in S^1$, $y\in R$, is obtained. Criteria for the solvability of the equation $g(x+\alpha)-g(x)=f(x)$ are found. Estimates for the speed of decrease of the function
$$ h_{q_n}(x)=\sum_{i=0}^{q_n-1}f(x+ia). $$
as $n\to\infty$ are obtained.

UDC: 517.4

Received: 20.04.1977


 English version:
Mathematical Notes, 1978, 23:6, 479–485

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026