RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 4, Pages 551–562 (Mi mzm8170)

This article is cited in 2 papers

One property of best quadrature formulas

A. A. Zhensykbaev

Kazakh State University

Abstract: It is established that for class $W_p^r$ $(r=1,2,\dots;1\le p\le\infty)$ the best quadrature formulas of the form
\begin{gather*} \int_0^1f(x)\,dx=\sum_{k=0}^\rho\sum_{i=1}^na_{ik}f^{(k)}(x_i)+R(f) \\ (0\le\rho\le r-1) \end{gather*}
when $\rho=2m$ and $\rho=2m+1$ coincide with one another. This same fact also supervenes for the class $\widetilde{W}_p^r$ ($r=1,2,\dots$; $1\le p\le\infty$) of periodic functions.

UDC: 517.5

Received: 20.05.1976


 English version:
Mathematical Notes, 1978, 23:4, 301–307

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026