RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 3, Pages 401–404 (Mi mzm8155)

This article is cited in 9 papers

Oscillation of solutions of a system of differential equations

J. D. Mirzov

Adygei Pedagogic Institute

Abstract: The system
$$ u'_1=a_1(t)|u_2|^{\lambda_1}\operatorname{sign}u_2,\qquad u'_2=-a_2(t)|u_1|^{\lambda_2}\operatorname{sign}u_1,\eqno(1) $$
is considered, where the functions $a_i:[0,+\infty)\to\mathbf R$ $(i=1,2)$ are locally summable, $\lambda_i>0$ $(i=1,2)$ and $\lambda_1\cdot\lambda_2=1$. Sufficient conditions are obtained for all solutions of system (1) to be oscillating. Furthermore, functions $a_i(t)$ $(i=1,2)$ are, generally speaking, not assumed to be nonnegative.

UDC: 517.9

Received: 08.12.1976


 English version:
Mathematical Notes, 1978, 23:3, 218–220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026