RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 3, Pages 351–360 (Mi mzm8150)

This article is cited in 1 paper

Problem of correctness of the best approximation in the space of continuous functions

A. V. Kolushov

M. V. Lomonosov Moscow State University

Abstract: Let $W^rH_\omega$ the subclass of those functions of $C^r[a,b]$, for which $\omega(f^{(r)},\delta)\le\omega(\delta)$, where $\omega(\delta)$ is a given modulus of continuity, and $P_n$ be the space of algebraic polynomials of degree at most $n$ and $\pi_n(f)$ be the polynomial of best approximation for $f(x)$ on $[a,b]$. Estimates for
$$ A_1(\varepsilon)=\sup_{f\in W^rH_\omega}\sup_{\substack{q_n\in P_n\\\|f-q_n\|\le\|f-\pi_n(f)\|+\varepsilon}}\|\pi_n(f)-q_n\|, $$
and moduli of continuity of the operators of best approximation on $W^rH_\omega$ are established. For example, if $\omega(\delta)=\delta^\alpha$, then
\begin{alignat*}{2} A_1(\varepsilon)&\asymp\varepsilon^{(r+\alpha)/(n+r+\alpha)}&&\quad\text{for }\varepsilon<1, \\ A_1(\varepsilon)&\asymp\varepsilon&&\quad\text{for }\varepsilon>1. \end{alignat*}


UDC: 517.5

Received: 15.06.1976


 English version:
Mathematical Notes, 1978, 23:3, 190–195

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026