RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 2, Pages 237–248 (Mi mzm8137)

This article is cited in 14 papers

Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function

G. Sh. Guseinov

M. V. Lomonosov Moscow State University

Abstract: Restoration from the generalized spectral function of the equations
\begin{gather*} b_0y_0+a_0y_1=\lambda y_2, \\ a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1}=\lambda y_n,\quad n=1,2,3,\dots, \end{gather*}
where $a_n$ and $b_n$ are arbitrary complex numbers, $a_n\ne0$ ($n=0,1,2,\dots$), $\lambda$ is a complex parameter, and $\{y_n\}_0^\infty$ infin is the required solution, is investigated. Necessary and sufficient conditions for solvability of the inverse problem are obtained, and the restoration procedure is described.

UDC: 517.9

Received: 22.12.1976


 English version:
Mathematical Notes, 1978, 23:2, 130–136

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026