RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1978 Volume 23, Issue 1, Pages 67–78 (Mi mzm8120)

This article is cited in 14 papers

Precise inequalities for norms of functions, third partial, second mixed, or directional derivatives

V. N. Konovalov

Mathematics Institute, Academy of Sciences of the Ukrainian SSR

Abstract: For functions $f$ which are bounded throughout the plane $R^2$ together with the partial derivatives $f^{(3,0)}$, $f^{(0,3)}$, inequalities
\begin{gather*} \|f^{(1,1)}\|\le\sqrt[3]3\|f\|^{1/3}\|f^{(3,0)}\|^{1/3}\|f^{(0,3)}\|^{1/3}, \\ \|f_e^{(2)}\|\le\sqrt[3]3\|f\|^{1/3}(\|f^{(3,0)}\|^{1/3}|e_1|+\|f^{(0,3)}\|^{1/3}|e_2|)^2, \end{gather*}
are established, where $\|\cdot\|$ the upper bound on $R^2$ of the absolute values of the corresponding function, andf $f_e^{(2)}$ is the second derivative in the direction of the unit vector $e=(e_1,e_2)$. Functions are exhibited for which these inequalities become equalities.

UDC: 517.5

Received: 29.11.1976


 English version:
Mathematical Notes, 1978, 23:1, 38–44

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026