RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 5, Pages 763–770 (Mi mzm8098)

Distribution of the supremum of sums of independent variables with negative drift

M. S. Sgibnev

Institute of Mathematics, Siberian Branch of USSR Academy of Sciences

Abstract: Let $\{\xi_n\}$ be a sequence of identically distributed independent random variables, $M\xi_1=\mu<0$, $M\xi_1^2<\infty$; $S_0=0$, $S_n=\xi_1+\xi_2+\dots+=xi_n$, $n\ge1$; $\overline S=\sup\{S_n:n\ge0\}$. The asymptotic behavior of $P(\overline S\ge t)$ as $t\to\infty$ is studied. If $\int_t^\infty P(\xi_1\ge x)\,dx=O(\tau(t))$, then
$$ P(\overline S\ge t)-\frac1{|\mu|}\int_t^\infty P(\xi_1\ge x)\,dx=O(\tau(t)/t), $$
$\tau(t)$ is a positive function, having regular behavior at infinity.

UDC: 519.2

Received: 14.01.1977


 English version:
Mathematical Notes, 1977, 22:5, 916–920

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026