RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 3, Pages 395–399 (Mi mzm8060)

This article is cited in 1 paper

Absolute upper semicontinuity

V. D. Ponomarev

Latvian State University

Abstract: It is proved that the following conditions are equivalent: the function $\varphi[a,b]\to R$ is absolutely upper semicontinuous (see [1]); $\varphi$ is a function of bounded variation with decreasing singular part; there exists a summable function $g:[a,b]\to R$ such that for any $t'\in[a,b]$ and $t''\in[t',b]$, we have $\varphi(t'')-\varphi(t')\le\int_{t'}^{t''}g(s)\,ds$.

UDC: 517.9

Received: 05.03.1976


 English version:
Mathematical Notes, 1977, 22:3, 711–713

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026