RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 2, Pages 257–268 (Mi mzm8046)

Upper bounds of best one-sided approximations of the classes $W^rL_\psi$ in the metric of $L$

V. G. Doronina, A. A. Ligunb

a Dnepropetrovsk State University
b Dneprodzerzhinsk Industrial Institute

Abstract: The lowest upper bound is obtained for best one-sided approximations of classes $W^rL_\psi$ ($r=1,2,\dots$) by trigonometric polynomials and splines of minimum deficiency with equidistant knots, in the metric of space $L$, where $W^rL_\psi=\{f:f(x+2\pi)=f(x)$, $f^{(r-1)}(x)$ is absolutely continuous, $\|f^{(r)}\|_{L_\psi}\le1\}$ and $L_\psi$ is an Orlicz space.

UDC: 517.5

Received: 30.12.1975


 English version:
Mathematical Notes, 1977, 22:2, 633–640

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026