RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 22, Issue 1, Pages 129–135 (Mi mzm8032)

This article is cited in 1 paper

Another method for computing the densities of integrals of motion for the Korteweg–de Vries equation

B. M. Levitan

M. V. Lomonosov Moscow State University

Abstract: In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to $q$ of the functional $\int_0^\pi W(x,t,x;q)\,dx$ ($t$ is fixed) is computed, where $W(x,t,x;q)$ is the Riemann function of the problem
\begin{gather*} \frac{\partial^2u}{\partial x^2}-q(x)u=\frac{\partial^2u}{\partial t^2}\quad(-\infty<x<\infty), \\ u|_{t=0}f=(x),\quad\frac{\partial u}{\partial t}\Bigr|_{t=0}=0. \end{gather*}


UDC: 517.9

Received: 17.11.1976


 English version:
Mathematical Notes, 1977, 22:1, 562–565

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026