RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 70, Issue 6, Pages 909–917 (Mi mzm802)

$\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups

P. V. Ushakov

Academy Civil Protection the of Russian Ministry for Emergency Situations

Abstract: Let $A$ be the free product of two Abelian torsion-free groups, let $P\triangleleft A$ and $P\subseteq C$, where $C$ is the Cartesian subgroup of the group $A$, and let $\mathbb Z(A/P)$ contain no zero divisors. In the paper it is proved that, in this case, any automorphism of the group $A/P'$ is inner. This result generalized the well-known result of Bachmuth, Formanek, and Mochizuki on the automorphisms of groups of the form $F_2/R'$, $R\triangleleft F_2$, $R\subseteq F'_2$, where $F_2$ is a free group of rank two.

UDC: 512.54

Received: 07.02.2000

DOI: 10.4213/mzm802


 English version:
Mathematical Notes, 2001, 70:6, 830–837

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026