RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 6, Pages 777–788 (Mi mzm8008)

This article is cited in 1 paper

On the convergence of double Fourier series of functions from $L_p$, $p>1$

I. L. Bloshanskii

M. V. Lomonosov Moscow State University

Abstract: It is proved that if a function from $L_p$, $p>1$, satisfies the condition
$$ \frac1{t\cdot\tau}\int_0^t\int_0^\tau|f(x+u,y+v)-f(x,y)|\,du\,dv=O\Bigl(\Bigl[\ln\frac1{t^2+\tau^2}\Bigr]^{-2}\Bigr), $$
then the double Fourier series of function $f$, under summation over a rectangle, converges almost everywhere.

UDC: 517.5

Received: 06.04.1976


 English version:
Mathematical Notes, 1977, 21:6, 438–444

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026