RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 5, Pages 627–639 (Mi mzm7995)

This article is cited in 1 paper

Series of rational fractions with rapidly decreasing coefficients

T. A. Leont'eva

M. V. Lomonosov Moscow State University

Abstract: In [1] it was shown that if a function $f(z)$, analytic inside the unit disk, is representable by a series $\sum_{n=1}^\infty\frac{\mathscr A_n}{1-\lambda_nz}$ and if the coefficients $\mathscr A_n$ rapidly tend to zero, then $f(z)$ satisfies some functional equation $M_L(f)=0$. In the present paper the converse problem is solved. It is shown that if $f(z)$ satisfies the equation $M_L(f)=0$, then the expansion coefficients rapidly tend to zero.

UDC: 517.5

Received: 08.01.1976


 English version:
Mathematical Notes, 1977, 21:5, 353–360

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026