RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 4, Pages 495–502 (Mi mzm7977)

This article is cited in 1 paper

The norm in $C$ of orthogonal projections onto subspaces of polygonal functions

P. Oswald

Odessa State University

Abstract: Let $P_\pi$ be an orthogonal projection (in the sense of $L_2$) onto the subspace of polygonal functions over a certain partition $\pi$ of the segment $[0,1]$. Z. Ciesielski has established the following estimate for the norm of this operators, as acting from $C$ into $C$, valid for an arbitrary partition: $\|P_\pi\|_{C\to C}\le3$. In this note it is proved that this estimate is final; more precisely, it is shown that $\sup\limits_\pi\|P_\pi\|_{C\to C}=3$.

UDC: 517.5

Received: 29.01.1976


 English version:
Mathematical Notes, 1977, 21:4, 276–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026