RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 3, Pages 355–370 (Mi mzm7963)

This article is cited in 2 papers

Rational approximations of convex functions

A. Khatamov

M. V. Lomonosov Moscow State University

Abstract: The following inequalities are shown to hold for the least uniform rational deviations $R_n(f)$ of a function $f(x)$, continuous and convex in the interval $[a,b]$:
$$ R_n(f)\le C(\nu)\Omega(f)n^{-1}\overbrace{\ln\dots\ln}^{\nu\text{ times}}n $$
($\nu$ is an integer, $C(\nu)$ depends only on $\nu$, and $\Omega(f)$ is the total oscillation of $f$);
$$ R_n(f)\le C_1(\nu)n^{-1}\overbrace{\ln\dots\ln}^{\nu\text{ times}}n\inf\limits_{(b-a)\varkappa_n\le\lambda<b-a}\Bigl\{\omega(\lambda,f)+M(f)n^{-1}\ln\frac{b-a}\lambda\Bigr\} $$
($\nu$ is an integer, $C_1(\nu)$ depends only on $\nu$, $\varkappa_n=\exp(-n/(500\ln^2n))$), $\omega(\delta,f)$ is the modulus of continuity of $f$, and $M(f)=\max|f(x)|$.

UDC: 517.5

Received: 24.09.1975


 English version:
Mathematical Notes, 1977, 21:3, 198–207

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026