RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 3, Pages 289–296 (Mi mzm7956)

This article is cited in 1 paper

Algebraic integers with discriminants containing fixed prime divisors

L. A. Trelina

Institute of Mathematics, Academy of Sciences Byelorussian SSR

Abstract: It is proved that any algebraic integer $\alpha$ of degree $n\ge2$ whose discriminant is a product of powers of prescribed primes $p_1,\dots,p_r$ has the form $\alpha=a+\beta p_1^{v_1}\dotsp_r^{v_r}$, where $\alpha,v_1,\dots,v_r$ are rational integers and $\beta$ is an integer whose height does not exceed an effectively defined bound depending $\max(p1,\dots,p_r)$, $r$, and $n$.

UDC: 511

Received: 29.06.1976


 English version:
Mathematical Notes, 1977, 21:3, 161–165

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026