RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 70, Issue 6, Pages 803–814 (Mi mzm794)

This article is cited in 2 papers

On the Fourier–Haar Coefficients of Functions of Several Variables with Bounded Vitali Variation

S. Yu. Galkina

Nizhny Novgorod State Pedagogical University

Abstract: In this paper, we study the behavior of the Fourier–Haar coefficients $a_{m_1,\dots,m_n}(f)$ of functions $f$ Lebesgue integrable on the $n$-dimensional cube $D_n=[0,1]^n$ and having a bounded Vitali variation $V_{D_n}f$ on it. It is proved that
$$ \sum _{m_1=2}^\infty\dotsi\sum _{m_n=2}^\infty |a_{m_1,\dots,m_n}(f)| \le\biggl(\frac{2+\sqrt 2}3\biggr)^n\cdot V_{D_n}f $$
and shown that this estimate holds for some function of bounded finite nonzero Vitali variation.

UDC: 517.518.24+517.518.36+517.521.5

Received: 27.11.2000

DOI: 10.4213/mzm794


 English version:
Mathematical Notes, 2001, 70:6, 733–743

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026