RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1977 Volume 21, Issue 1, Pages 93–98 (Mi mzm7933)

On the representation of differentiations by Hamiltonians, operating from an algebra of local observable spin systems

A. Ya. Helemskii

M. V. Lomonosov Moscow State University

Abstract: Let $\overline{\mathfrak A}$ and $\mathfrak A$ be algebras of local and quasilocal observable spin systems corresponding to the group $Z^r$, $D:\mathfrak A\to\overline{\mathfrak A}$ be a differentiation invariant with respect to displacements. The question of representation of $D$ in the form of formal Hamiltonian $H=\sum_{k\in Z^r}T_kX$ formed by the displacements of an element $X\in\overline{\mathfrak A}$ is considered. It is shown that such a representation exists if the condition $\overline{\mathfrak A}$ holds, where $[H,a]\in\overline{\mathfrak A}$; $a\in\mathfrak A$ means an element obtained from the elements $[T_kX,a]$ by some $r$-multiple process of summation.

UDC: 517

Received: 12.11.1975


 English version:
Mathematical Notes, 1977, 21:1, 51–54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026