RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 6, Pages 843–845 (Mi mzm7913)

Integrals of logarithmically concave functions

V. A. Tomilenko

Tomsk State University

Abstract: In this note we consider integrals of the form
$$ \int_Af(x,y)\,dy\stackrel{def}=I(x,A), $$
where $f$ is a finite logarithmically concave function in $E^{n+m}$ and $A$ is a convex subset of the space $E^m$. For any pair of convex sets $A$ and $B$ and any $x_1,x_2\in E^n$ we establish the inequality
$$ I(\lambda x_1+(1-\lambda)x_2,\lambda A+(1-\lambda)B)\ge I^\lambda(x_1,A)I^{1-\lambda}(x_2,B)\quad0<\lambda<1. $$


UDC: 517.5

Received: 15.03.1976


 English version:
Mathematical Notes, 1976, 20:6, 1030–1031

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026