RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 5, Pages 709–716 (Mi mzm7896)

Conditions for the self-adjointness of a quasi-elliptic operator

M. G. Gimadislamov

Bashkir State University

Abstract: We prove the following theorem for the operator $L=\sum_{k=1}^n(-1)^{m_k}D_k^{2m_k}+q$ considered in $L_2(R^n)$ (the $m_k$ are natural numbers):
If $q(x)\ge-C\max\limits_k|x_k|^{\frac1{1-1/2m_k}}$ ($C>0$) for sufficiently large $|x|$, then L is a self-adjoint operator.

UDC: 517.9

Received: 14.01.1975


 English version:
Mathematical Notes, 1976, 20:5, 957–961

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026