RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 5, Pages 665–674 (Mi mzm7891)

Tests for the convergence of continued fractions, based on the fundamental system of inequalities

S. S. Khloponin

Stavropol State Pedagogical Institute

Abstract: We have proved that if the partial numerators of the continued fraction $f(c)=\frac11+\frac{c_2}1+\frac{c_3}1+\dots$ are all nonzero and for at least some number $n\ge1$ satisfy the inequalities
$$ p_n|1+c_n+c_{n+1}|\ge p_{n-2}p_n|c_n|+|c_{n+1}|\quad(n\ge1,\quad p_{-1}=p_0=c_1=0,\quad p_n\ge0), $$
then $f(c)$ converges in the wide sense if and only if at least one of the series
\begin{gather} \sum_{n=1}^\infty|c_3c_5\dots c_{2n-1}/(c_2c_4\dots c_{2n})|, \\ \sum_{n=1}^\infty|c_3c_4\dots c_{2n}/(c_3c_5\dots c_{2n+1})|. \end{gather}


UDC: 517

Received: 16.04.1975


 English version:
Mathematical Notes, 1976, 20:5, 933–938

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026