RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 70, Issue 5, Pages 780–786 (Mi mzm789)

This article is cited in 2 papers

A Criterion for Contiguity of Quasiconcave Functions

V. I. Ovchinnikova, A. S. Titenkovb

a Voronezh State University
b Kursk State University

Abstract: Quasiconcave functions $\rho _0$ and $\rho _1$ belong to the same scale if there exist quasiconcave functions $\psi _0$ and $\psi _1$ and numbers $0<\theta _0<1$, $0<\theta _1<1$ such that $\rho _0=\psi _0^{1-\theta _0}\psi _1^{\theta _0}$ and $\rho _1=\psi _0^{1-\theta _1}\psi _1^{\theta _1}$. We establish a criterion for such functions to belong to the same scale up to equivalence. This criterion is obtained in terms of nodes of the corresponding linear-constant step-functions. It turns out that nodes must be equivalent to sequences.

UDC: 517.982

Received: 03.04.2000

DOI: 10.4213/mzm789


 English version:
Mathematical Notes, 2001, 70:5, 708–713

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026