RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 4, Pages 549–558 (Mi mzm7877)

A weight space invariant with respect to a singular linear operator

A. Ya. Yakubov

Daghestan Polytechnical University

Abstract: For the singular operator
$$ S_u=\int_a^b\frac{K(x,s)u(s)}{s-x}\,ds $$
invariant weight spaces $\lambda_{\alpha,p}^\beta$ ($u(x)\in\lambda_{\alpha,p}^\beta$ if $1^0$$u(x)\rho(x)\in H_\beta^0$, $2^0$$\|u\|_{L_p(\rho_0)}<\infty$, $\rho(x)=(x-a)(b-x)^{1+\beta}$, $\rho_0(x)-(b-x)^{\alpha(p-1)}$, $0<\alpha$, $\beta<1$, $p>1$, $H_\beta^0$ is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.

UDC: 517.5

Received: 06.03.1975


 English version:
Mathematical Notes, 1976, 20:4, 864–870

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026