RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 1, Pages 61–68 (Mi mzm7838)

This article is cited in 21 papers

Multiple rational trigonometric sums and multiple integrals

V. N. Chubarikov

M. V. Lomonosov Moscow State University

Abstract: We obtain an estimate of the modulus of a complete multiple rational trigonometric sum:
$$ \biggl|\sum_{x_1,\dots,x_r=1}^q\exp(2\pi if(x_1,\dots,x_r)/q)\biggr|\ll q^{r-1/n+\varepsilon} $$
where
\begin{gather*} f(x_1,\dots,x_r)=\sum\nolimits_{0\le t_1,\dots,t_r\le n^at_1,\dots,t_r}x_1^{t_1}\dots x_r^{t_r}, \\ a_{0,\dots,0}=0,\quad(a_{0,\dots,0,1}\dots,a_{n,\dots,n},q)=1, \end{gather*}
and an estimate of the modulus of a multiple trigonometric integral.

UDC: 511

Received: 11.03.1976


 English version:
Mathematical Notes, 1976, 20:1, 589–593

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026