This article is cited in
21 papers
Multiple rational trigonometric sums and multiple integrals
V. N. Chubarikov M. V. Lomonosov Moscow State University
Abstract:
We obtain an estimate of the modulus of a complete multiple rational trigonometric sum:
$$
\biggl|\sum_{x_1,\dots,x_r=1}^q\exp(2\pi if(x_1,\dots,x_r)/q)\biggr|\ll q^{r-1/n+\varepsilon}
$$
where
\begin{gather*}
f(x_1,\dots,x_r)=\sum\nolimits_{0\le t_1,\dots,t_r\le n^at_1,\dots,t_r}x_1^{t_1}\dots x_r^{t_r},
\\
a_{0,\dots,0}=0,\quad(a_{0,\dots,0,1}\dots,a_{n,\dots,n},q)=1,
\end{gather*}
and an estimate of the modulus of a multiple trigonometric integral.
UDC:
511 Received: 11.03.1976