RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 88, Issue 3, Pages 365–373 (Mi mzm7829)

This article is cited in 26 papers

Estimation of Kloosterman Sums with Primes and Its Application

M. Z. Garaev

National Autonomous University of Mexico

Abstract: Suppose that $p$ is a large prime. In this paper, we prove that, for any natural number $N<p$ the following estimate holds:
$$ \max_{(a,p)=1}\biggl|\sum_{q\le N}e^{2\pi iaq^*/p}\biggr|\le(N^{15/16}+N^{2/3}p^{1/4})p^{o(1)}, $$
where $q$ is a prime and $q^*$ is the least natural number satisfying the congruence $qq^*\equiv1\,(\operatorname{mod}p)$. This estimate implies the following statement: if $p>N>p^{16/17+\varepsilon}$, where $\varepsilon>0$, and if we have $\lambda\not\equiv0\,(\operatorname{mod}p)$, then the number $J$ of solutions of the congruence
$$ q_1(q_2+q_3)\equiv\lambda\quad(\operatorname{mod}p) $$
for the primes $q_1,q_2,q_3\le N$ can be expressed as
$$ J=\frac{\pi(N)^3}p(1+O(p^{-\delta})),\qquad \delta=\delta(\varepsilon)>0. $$
This statement improves a recent result of Friedlander, Kurlberg, and Shparlinski in which the condition $p>N>p^{38/39+\varepsilon}$ was required.

Keywords: Kloosterman sum, Cauchy–Bunyakovskii inequality, Dirichlet's principle, Vinogradov sieve, Dirichlet $L$-function, trigonometric sum, Manholdt function.

UDC: 511.33

Received: 20.04.2009

DOI: 10.4213/mzm7829


 English version:
Mathematical Notes, 2010, 88:3, 330–337

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026