RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 1, Pages 47–60 (Mi mzm7824)

Approximation to the transcendental relationship of two algebraic points of the function $\wp(z)$ with complex multiplication

N. D. Nagaev

Leningrad State Pedagogical Institute

Abstract: For fixed $\varepsilon>0$, the following inequality holds:
$$ \Bigl|\frac uv-\beta\Bigr|>C\exp(-(\ln H)^{2+\varepsilon}) $$
for all numbers $\beta$ belonging to a field $K$ of finite degree over $Q$. The constant $C>0$ does not depend on beta. $H$ is the height of beta. $\wp(u)$ and $\wp(v)$ are algebraic numbers, and $u/v$ is a transcendental number. $\wp(z)$ is the Weierstrass function with complex multiplication and algebraic invariants. The proof is ineffective.

UDC: 511

Received: 07.08.1975


 English version:
Mathematical Notes, 1976, 20:1, 581–588

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026