RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 20, Issue 1, Pages 35–45 (Mi mzm7823)

This article is cited in 11 papers

The sharpening of the bounds on certain linear forms

A. I. Galochkin

M. V. Lomonosov Moscow State University

Abstract: Let $g_1,\dots,g_{m-1}$, $b$, $h_1,\dots,h_m$ be the integers from some imaginary quadratic field, $b\ne0$, $\max|g_i|=g$, $\max|h_j|=H\ne0$, $P_m(x)=x^m+g_{m-1}x^{m-1}+\dots+g_1x$, $P_m(x)\ne0$ for x =$x=1,2,\dots$,
$$ \psi(z)=1+\sum_{\nu=1}^\infty\Bigl[\prod_{x=1}^\nu P_m(x)\Bigr]^{-1}z^\nu. $$
Then
$$ \Bigl|h_1\psi\Bigl(\frac1b\Bigr)+h_2\psi'\Bigl(\frac1b\Bigr)+\dots+h_m\psi^{(m-1)}\Bigl(\frac1b\Bigr)\Bigr|>CH^{1-m}\Bigl\{\frac{\ln\ln(H+2)}{\ln(H+2)}\Bigr\}^\gamma, $$
where $\gamma=(m-1)^2g-(m-1)\operatorname{Re}g_{m-1}+m(m^2+m-4)/2$, and $C=C(b,m,g)>0$.

UDC: 511

Received: 23.10.1975


 English version:
Mathematical Notes, 1976, 20:1, 575–581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026