RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 6, Pages 843–851 (Mi mzm7805)

This article is cited in 2 papers

Regular completion of modules

V. K. Zakharov

Leningrad Institute for Textile and Light Industry

Abstract: In this paper we introduce the concept of a module regular in the sense of von Neumann. We construct a regular completion of a module $X$ torsion-free relative to a filter $\mathfrak F_R$of dense modules over a commutative semiprimary ring $R$. The paper's main result is a theorem that module $X$ is divisible (is injective relative to filter $\mathfrak F_R$) if and only if it is von Neumann-regular and orthocomplete. We prove that a divisible hull of module $X$ relative to $\mathfrak F_R$ is a composition of two simpler completions: a regular one and an orthocompletion.

UDC: 519.4

Received: 19.05.1975


 English version:
Mathematical Notes, 1976, 19:6, 496–500

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026