RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2001 Volume 70, Issue 5, Pages 679–690 (Mi mzm780)

This article is cited in 7 papers

On a Property of Functions on the Sphere

A. Yu. Volovikov

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)

Abstract: According to the Knaster conjecture, for any continuous function $f\colon S^{n-1}\to\mathbb R$ and any $n$-point subset of the sphere $S^{n-1}$, there exists a rotation mapping all the points of this subset to a level surface of the function $f$. In the present paper, this conjecture is proved for the case in which $n=p^2$ for an odd prime $p$ and the points lie on a circle and divide it into equal parts.

UDC: 515.142.226

Received: 06.04.1999
Revised: 27.06.2000

DOI: 10.4213/mzm780


 English version:
Mathematical Notes, 2001, 70:5, 616–627

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026