RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 4, Pages 491–500 (Mi mzm7767)

This article is cited in 1 paper

Boundary values of a convergent sequence of J-contractive matrix-functions

D. Z. Arova, L. A. Simakovab

a Odessa Pedagogical Institute
b Odessa Technological Institute for Refrigeration Industry

Abstract: In this note it is proved that if $W_n(z)$ are $J$-contractive matrix-functions which are meromorphic in the disk $|z|<1$ ($J-W_n^*(z)JW_n(z)\ge0$, $J^*=J$, $J^2=I$), $W_n(z)\to W(z)$, as $n\to\infty$,
$$ W^*(z)JW(z)\le W_n^*(z)JW_n(z) $$
and
$$ \det W(z)\not\equiv0, $$
then there exists a subsequence $W_{n_k}(z)$ whose boundary values
$$ W^*_{n_k}(\zeta)JW_{n_k}(\zeta)\to W^*(\zeta)JW(\zeta)\quad (\text{a. e. }|\zeta|=1). $$
It follows from this result that every convergent Blaschke–Potapov product has $J$-unitary boundary values.

UDC: 517.5

Received: 11.11.1974


 English version:
Mathematical Notes, 1976, 19:4, 301–306

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026