RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 3, Pages 353–364 (Mi mzm7754)

Direct and inverse inequalities for $\varphi$-Fejér mean-square approximations

V. Yu. Popov

Mathematics and Mechanics Institute of the Ural Scientific Center, Academy of Sciences of the USSR

Abstract: We consider approximation of a function $f\in W_2^l(R_1)$, $l\ge0$, by linear operators of the form
$$ K_\sigma^\varphi(f;x)=\frac1{\sqrt{2\pi}}\int_{R_1}\varphi\Bigl(\frac u\sigma\Bigr)\widetilde f(u)e^{iux}\,du,\quad \sigma>0. $$
We elucidate the conditions for the existence of direct and inverse inequalities between the quantities $\|f-K_\sigma^\varphi(f)\|_{L_2}$ and $\omega_k(f;\tau/\sigma)_{L_2}$, viz., the $k$-th integral modulus of continuity of the function $f(x)$, $k=1,2,\dots,$. Under some restrictions on $\varphi(u)$, $u\in R_1$ the exact constants in these inequalities are found.

UDC: 517.5

Received: 11.06.1974


 English version:
Mathematical Notes, 1976, 19:3, 213–220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026