RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 2, Pages 225–236 (Mi mzm7742)

This article is cited in 2 papers

Solvability of partial differential equations of infinite order in certain classes of entire functions

G. G. Braichev


Abstract: In this paper it is shown that under conditions of applicability of the operator $\mathfrak Ly=\sum_{k\ge0}{a_kD^ky(x)}$ to the class $[\rho,\sigma]$, $\rho=(1,\rho_2$, $\rho_2<1$, $\sigma=(\sigma_1, \sigma_2)$, $\sigma_1,\sigma_2<\infty$ the equation $\mathfrak Ly=f$ has a particular solution of this class $\forall\,f\in[\rho,\sigma]$. The general form of a solution of the homogeneous equation $\mathfrak Ly=0$ is established. The growth of a solution is investigated by means of a system of conjugate orders and a system of conjugate types.
A solvability result is also obtained in the class $E(T)=\bigcup\limits_{\sigma\in T}[\rho,\sigma]$, where $T$ is a certain set in $R_+^2$ depending on the operator $\mathfrak L$.

UDC: 517.946

Received: 11.10.1974


 English version:
Mathematical Notes, 1976, 19:2, 135–140

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026