RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1976 Volume 19, Issue 2, Pages 215–224 (Mi mzm7741)

A class of weighted spaces of entire functions

V. A. Bogachev

Rostov State University

Abstract: In the class of weighted spaces of entire functions
$$ B_{\Phi(x,y)}=\Bigl\{f(z)\in A_\infty:\sup_{z\in C}\frac{|f(z)|}{\Phi(x,y)}<\infty\Bigr\}\quad(z=x+iy), $$
where $\Phi(x,y)$ is a continuous function on $R^2$ possessing certain additional properties, estimates are obtained for the norms of derivatives and norms of functions involving a translation of the independent variable in terms of the norm of the original function. These estimates are then used to prove the existence and uniqueness of solutions in the spaces $B_{\Phi(x,y)}$ of linear differential-difference equations of infinite order with constant coefficients.

UDC: 517.9

Received: 20.03.1975


 English version:
Mathematical Notes, 1976, 19:2, 129–134

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026