RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 2010 Volume 87, Issue 4, Pages 616–623 (Mi mzm7707)

This article is cited in 27 papers

Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$

M. Sh. Shabozov

Institute of Mathematics, Academy of Sciences Republic of Tajikistan

Abstract: We obtain exact values of different $n$-widths for classes of differentiable periodic functions in the space $L_{2}[0,2\pi]$ satisfying the constraint
$$ \biggl(\int_{0}^{h}\omega_{m}^{p}(f^{(r)};t)\,dt\biggr)^{1/p}\le\Phi(h), $$
where $0<h<\infty$, $1/r<p\le2$, $r\in\mathbb{N}$, and $\omega_{m}(f^{(r)};t)$ is the modulus of continuity of $m$th order of the derivative $f^{(r)}(x)\in L_{2}[0,2\pi]$.

Keywords: differentiable periodic function, width in the sense of Bernstein, Kolmogorov, Gelfand, the space $L_{2}[0,2\pi]$, trigonometric polynomial, Fourier series, modulus of continuity, linear operator.

UDC: 517.5

Received: 09.02.2009

DOI: 10.4213/mzm7707


 English version:
Mathematical Notes, 2010, 87:4, 575–581

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026