RUS  ENG
Full version
JOURNALS // Matematicheskie Zametki // Archive

Mat. Zametki, 1975 Volume 18, Issue 6, Pages 803–814 (Mi mzm7692)

This article is cited in 4 papers

Interpolation by polyhedral functions

V. F. Babenkoa, A. A. Ligunb

a Dnepropetrovsk State University
b Dneprodzerzhinsk State Technical University

Abstract: A polyhedral function $l_{P(\Delta_n)}(f)$. interpolating a function $f$, defined on a polygon $\Phi$, is defined by a set of interpolating nodes $\Delta_n\subset\Phi$ and a partition $P(\Delta_n)$ of the polygon $\Phi$ into triangles with vertices at the points of $\Delta_n$. In this article we will compute for convex moduli of continuity the quatities
$$ E(H_\Phi^\omega;P(\Delta_n))=\sup_{f\in H_\Phi^\omega}\|f-l_{P(\Delta_n)}(f)\|, $$
and also give an asymptotic estimate of the quantities
$$ E_n(H_\Phi^\omega)=\inf_{\Delta_n}\inf_{P(\Delta_n)}E(H_\Phi^\omega;P(\Delta_n)). $$


UDC: 517.51

Received: 04.11.1974


 English version:
Mathematical Notes, 1975, 18:6, 1068–1074

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026